суббота, 3 ноября 2012 г.

ПРИМЕНЕНИЕ ПОРОШКОВЫХ СПЛАВОВ В СЕЛЬСКОХОЗЯЙСТВЕННОМ МАШИНОСТРОЕНИИ И РЕМОНТНОМ ПРОИЗВОДСТВЕ

С целью повышения срока службы быстроизнашивающихся деталей сельскохозяйственных машин применяют наплавку твердых сплавов. Наибольшим сопротивлением износу обладают сплавы, содержащие карбиды или бориды, сцементированные соответствующей эвтектикой. Наплавку твердыми сплавами сейчас проводят не только при восстановлении изношенных, но и при изготовлении новых деталей машин. Это в зависимости от вида   твердого   сплава   и  технологии   работ повышает износостойкость деталей в 2... 10 раз; значительно сокращает потребность в новых деталях, время простоя машин и механизмов, а также расходы на монтажные работы.

Современные твердые сплавы в зависимости от способа изготовления подразделяют на литые и порошкообразные (зернообразные).
  •  К первым относятся стеллиты В2К, ВЗК, ВЗК-ЦЭ, стеллитоподобные сплавы сормайт № 1 и сормайт № 2, порошковые электроды и ленты;
  • Ко вторым — сталинит вокар, ВИСХОМ-9 и боридная смесь.
Стеллиты и стеллитоподобные сплавы представляют собой твердый раствор карбида хрома в кобальте, никеле или железе. Основой твердого раствора стеллитов является кобальт, а стеллитоподобных сплавов — никель или железо. Данные сплавы выпускают в виде литых прутков и применяют в качестве присадочного металла при наплавке деталей машин, работающих в условиях сухого, полусухого и жидкостного трения в холодном и горячем состоянии.

Порошковые электроды и ленты применяют при наплавке ножей бульдозеров и скреперов, опорных катков тракторов и экскаваторов. Механические свойства металла, наплавленного порошковыми электродами и лентами, в случае необходимости можно изменять за счет химического состава наполнителя. На стержни порошковой проволоки наносят покрытия, которые тоже влияют на химический состав наплавленного металла. Наиболее распространенными и доступными наполнителями порошковых электродов и лент являются доменный ферромарганец и сталинит.

Порошковые электроды маркируют следующим образом: ЭТН-1 с шихтой из доменного ферромарганца, ЭТН-2 с шихтой из сталинита, ЭТН-3 с шихтой из доменного ферромарганца с добавлением 6...7% никеля. Твердость металла, наплавленного данными электродами, достигает HRC60...61.

Шихта улучшенного сталинита состоит из 38% феррохрома, 11% ферромарганца, 47% чугунного порошка и 4% нефтенного кокса. В наплавленном металле содержится около 20% хрома, 17% марганца, 3% кремния и до 10% углерода. Твердость металлопокрытия, полученного при однослойной наплавке, составляет HRC 50, при двухслойной HRC 56...57. Данную шихту применяют при наплавке щек дробилок, зубьев и козырьков ковшей экскаваторов, бандажей бегунов и других деталей.

Вокар представляет собой механическую смесь измельченного вольфрама с углеродом. В наплавленном металле присутствуют сложные карбиды вольфрама, находящиеся в твердом растворе. Наплавленный металл содержит до 10% углерода, до 3 — кремния, 85...87 — вольфрама и до 2% железа. Металлопокрытие имеет высокую твердость, износостойкость и хрупкость. Первый слой наплавки имеет твердость HRC 56...58, второй — HRC 61...63. Вокаром наплавляют только буровой инструмент. Высокая стоимость, а также свойства наплавленного  слоя ограничивают его применение.

Шихта ВИСХОМ-9 состоит из 74% измельченной стружки серого чугуна, 15 — ферромарганца, 5 — феррохрома, 6% серебристого графита, связанных между собой раствором жидкого стекла с водой. Металл, наплавленный такой шихтой, имеет твердость HRC 55...56. Данной шихтой наплавляют лапы культиваторов, лемеха, полевые доски плугов и т. п.

Боридная смесь БХ представляет собой механическую смесь, состоящую из 50% борида хрома и 50% железного порошка. Наплавленный металл насыщен кристаллами борида хрома, сцементированными эвтектикой, и содержит около 0,12% углерода, 35 — хрома, 7,63 — бора и 57,25 % железа; его твердость HRC 82...84, а износостойкость в 2...3 раза выше, чем при наплавке сталинитом. Боридную смесь применяют при наплавке деталей, работающих в абразивной среде  без ударных нагрузок.

Металлокерамические твердые сплавы и их применение

Металлокерамические твердые сплавы представляют сoбoй композиции, состоящие из особо твердых тугоплавких соединений в сочетании с вязким связующим металлом.

Наибольшее практическое применение для производства металлокерамических твердых сплавов имеют карбиды WC, TiC и ТаС. Связующим металлом в спечённых твердых  сплавах является кобальт, а иногда  никель и железо.

В зависимости от состава карбидной фазы твердые сплавы разделяют на три основные группы:
  •  однокарбид-пые сплавы WC — Со (типа ВК),
  •  дзухкарбидные сплавы WC—Ti С—Со (типа ТК),
  •  трехкарбидные сплавы WC—TiC—ТаС—Со (типаТТК).

Сплавы первой группы различаются по содержанию кобальта (2...30%) и по зернистости карбидной фазы. С увеличением содержания кобальта растет вязкость сплава, но снижается твердость и износостойкость. Укрупнение зерен карбида вольфрама повышает вязкость сплава, но снижает твердость.

Однокарбидные сплавы применяют для изготовления режущих инструментов, предназначенных для обработки хрупких  материалов:  чугуна, цветных металлов и сплавов, неметаллических материалов (резины, фибры, пластмасс), а также  нержавеющих   и   жаропрочных  сталей, титана и его  сплавов.  Сплавы   с   низким содержание кобальта ВК2, ВКЗ, ВКЗМ, ВК4 применяют для чисто вой   и получистовой  обработки, а сплавы   В Кб,   ВК6М, ВК8 — Для черновой  обработки.   Вязкие сплавы с большим  содержанием  кобальта   (более  20%)   используют для  оснащения  штампового   инструмента, работающего при значительных ударных  нагрузках. Мелкозернистые твердые сплавы (ВКЗМ, ВК6М) применяют при обработке твердых чугуиов по литейной корке. Если в марке стоит буква В   (ВК4В), это   значит, что сплавы   изготовлены из крупнозернистого карбида вольфрама.

Сплавы второй группы благодаря высокой твердости и износостойкости применяют преимущественно при высокоскоростной обработке сталей резанием. Свойства сплавов определяются содержанием карбида титана и кобальта. С увеличением содержания TiC повышается износостойкость сплава и уменьшается его прочность, а увеличение содержания кобальта повышает вязкость и снижает твердость.

Наивысшей для двухкарбидных сплавов износостойкостью и допустимой скоростью резания при чистовой обработке обладает сплав Т30К4. Сплавы Т15К6, Т5К.Ю предназначены для получистовой и черновой обработки углеродистых и легированных сталей (поковок, штамповок, отливок). Сплав Т5К12В применяют для тяжелой черновой обработки поковок, штамповок и отливок, а также   для   строгания    углеродистых    и    легированных сталей.

Сплавы третьей группы применяют для черновой и чистовой обработки труднообрабатываемых материалов, в том числе жаропрочных сплавов и сталей. Добавка карбида тантала или ниобия оказывает положительное влияние на прочность и режущие свойства сплавов. К этой группе относятся следующие марки: ТТ7К.12, ТТ7К15, ТТ8К6, ТТ20К9 и др.

В связи с дефицитностью твердых сплавов на основе вольфрама применяют сплавы на основе карбидов ванадия, молибдена, хрома. Например, твердый сплав на основе карбида хрома имеет более высокую жаростойкость, чем сплавы ВК и ТК, и обладает хорошей износостойкостью. В последнее время начинают применять безвольфрамовые твердые сплавы группы TiC—Ni—Mo (монитикар), по своим свойствам превосходящие тита-новольфрамовые сплавы. Сплавы группы монитикар предназначены для обработки в условиях безударных нагрузок углеродистых сталей и сплавов. Выпускаются следующие марки сплавов: A3, Б2, БЗ, Б4, Б5, ВЗ, ГЗ и ДЗ (44,3% TiC, 37,4% Ni, 18,3% Mo), имеющие низкий коэффициент трения и высокую износостойкость.

Твердые сплавы получают прессованием порошков карбидов и кобальта в изделия необходимой формы и последующим спеканием при 1250...1450 СС в атмосфере водорода или в вакууме. Твердые сплавы чаще изготовляют в виде стандартных пластин различной формы для оснащения ими резцов, фрез, сверл и других режущих инструментов, а также различных матриц для прессования полуфабрикатов и волочения проволоки. Пластины в режущем инструменте крепят либо медным припоем, либо механическим способом.

Минералокерамические твердые сплавы изготовляют из дешевого и недефицитного материала — окиси алюминия. Минералокерамические твердые сплавы термокорунд и микролит (ЦМ-332) выпускают в виде пластинок. Минералокерамика обладает большой твердостью и красностойкостью, что позволяет использовать ее при высоких скоростях резания для чистовой и получистовой обработки чугуна, стали и других материалов. Однако минералокаремика имеет высокую хрупкость и низкие показатели механической прочности, что ограничивает область ее применения.

Порошковые материалы: применение, классификация

Порошковые материалы из железа, углеродистой, легированной и нержавеющей сталей, бронзы, латуни, меди и других металлов и сплавов применяют для изготовления различных деталей машин и приборов.

Повышение механических свойств (прочности, твердости, пластичности) деталей из порошковых материалов достигается применением легированных порошков, а также термической   или   химико-термической  обработкой.

Большинство деталей машин делают из компактных материалов на железной и железомедной основе. Желе-зомедные спеченные сплавы обладают высокой прочностью, износостойкостью и вязкостью. Из порошковых сплавов на основе меди широкое применение получили латунные порошки для изготовления беспористых подшипников. Сюда же относятся сплавы на алюминиевой основе типа САП и САС.

К порошковым материалам со специальными свойствами относятся: антифрикционные, фрикционные, пористые, магнитные, вакуумные, контактные и др.

Из антифрикционных материалов изготавливают пористые подшипники скольжения и биметаллические вкладыши. Фрикционные материалы должны иметь стабильный коэффициент трения, быть достаточно прочными, иметь хорошую прирабатываемость, обладать высокой теплопроводностью и коррозионной стойкостью. Пористые материалы широко применяют для изготовления металлических фильтров из порошков железа, меди, латуни, бронзы, алюминия. Эти материалы служат для изготовления деталей, работающих при высоких температурах (лопатки газовых турбин), их также используют для токосъемников, электродов аккумуляторов, горелок.

Методами порошковой металлургии получают твердые магнитные материалы (постоянные магниты), мягкие магнитные  материалы и магнитодиэлектрики.

Металлокерамические контактные материалы по своему составу являются псевдосплавами металлов, обладающих высокой прочностью и тугоплавкостью (W, Мо и др.), с металлами, имеющими высокую электропроводность (Аl, Сu и др.). Для мощных воздушных выключателей применяют контакты на основе карбида вольфрама, а для  щеток и коллекторных  пластин — медно-графитовые композиции.

Вакуумные порошковые материалы применяют для изготовления ламп накаливания, рентгеновских трубок, катодных ламп, выпрямителей. Они должны обладать высокой механической прочностью, химической инертностью, небольшим коэффициентом линейного расширения, малой распыляемостью. Таким требованиям отвечают тугоплавкие металлы (W, Мо, Та), а также железо высокой чистоты и его сплавы с никелем, молибденом, кобальтом и медью.

ПОРОШКОВЫЕ МАТЕРИАЛЫ, ПОРОШКОВАЯ МЕТАЛЛУРГИЯ

Сплавы, получаемые из металлических порошков прессованием и последующим спеканием без расплавления, называют порошковыми, а метод получения — порошковой металлургией.

Порошковая металлургия позволяет получать готовые изделия, которые обычными методами литья и обработки давлением получены быть не могут либо получение которых сопряжено с большими трудностями. Данным методом получают изделия из особо тугоплавких металлов, сплавы и изделия из не растворимых друг в друге металлов (вольфрам и медь, железо и свинец), изделия из композиций металлов с различными неметаллическими материалами.

Методы производства металлических порошков разделяют на две группы: физико-механические — технологические процессы, при которых металлические порошки
получают в результате измельчения твердых или жидких металлов или сплавов без изменения их химического состава; физико-химические — технологические процессы, в результате которых происходят физико-химические превращения исходного материала и получаются металлические порошки, как правило, отличающиеся от исходного  материала по химическому  составу.